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Following a method of Johri and Goswami new solutions of coupled Brans- 
Dicke-Maxwell theory are generated from Zipoy's solutions in oblate and 
prolate spheroidal coordinates for source-free gravitational field. All these solu- 
tions become Euclidean at infinity. The asymptotic behavior and the singularity 
of the solutions are discussed and a comparative study made with the corre- 
sponding Einstein-Maxwell solutions. The possibility of a very large red shift 
from the boundary of the spheroids is also discussed. 

1. INTRODUCTION 

With the discovery of pulsars, which are dense, slowly rotating stars 
with large magnetic fields, there has been a resurgence of interest in the 
solutions of Einstein-Maxwell and Brans- Dicke- Maxwell field equations 
in the spheroidal coordinates, primarily because the equilibrium shape of 
the pulsars is supposed to be oblate spheroid and they are so far the only 
astronomical objects where general relativistic effects are not negligible. 

It is well known that Einstein's equations are not completely Machian 
in nature. To make things more consistent with Mach's principle and less 
reliant on absolute properties of space, Brans and Dicke (1961) introduced 
the concept of a scalar field. A number of authors have discussed methods 
of generating new solutions of these equations from known solutions of 
Einstein's equations. Among them are included Geroch (1971, 1972), 
Buchdahl (1972), Mclntosh (1974), and S. Chatterjee and S. Banerji (1980). 
In a recent paper Johri and Goswami (1979) have developed a method for 
generating new solutions of B-D-Maxwell  equations from known solutions 
of Einstein's field equations. In this paper we have applied their method to 
get new B-D-Maxwel l  solutions, using Zipoy's solutions as source equa- 
tions. The plan of our paper is as following: We summarize Zipoy's results 
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in Section 2. In Section 3 we give in brief Johri and Goswami's method. In 
Sections (4) and (5) solutions in oblate and prolate coordinates are dis- 
cussed. The paper ends with a brief discussion on the possible large red shift 
in our metric. 

2. ZIPOY'S SOLUTIONS 

In Weyl canonical form the axially symmetric static line element may 
be written in cylindrical coordinates as 

ds 2 = e2O dt 2 -- e2(h-a)( dp2 + d z 2 ) - p 2  e -2o d~2 (1) 

where o = o ( p ,  z), X=X(p, z). Oblate spheroidal coordinates (u, 0) are con- 
nected with (p, z) through 

p = a c o s h  u cos  O , z = a s i nh  u s in  O (2) 

where 0~<u~ < oo, -~r/2~<0~<~r/2, 0~<~o<~2rr, - o 0  < t <  or The line dement  
then reduces to the form 

ds 2 = e 2 ~  dt  2 -- a2e2(X-O)(sin h 2 u +  sin 20)(du 2 +dO 2) 

--a2e -2acosh2 ucos 20d~p 2 (3) 

Zipoy (1966) showed that the solutions for the "Newtonian potential" o can 
be written as a linear combination of Legendre polynomials of integral 
order L. 

For  L = 0, he got 

o =  - f l t a n - l c s c h u  (4) 

1 2- sinh2 u + sin2 0 
~. = ~ fl In cos--~ u (5) 

where f l = m / a  ( m  may be identified with the mass of the source a for 
asymptotic flatness). 

In prolate spheroided coordinates 

ds  2 = e 2 O d t  2 -- a2e2(X-O)(sinh 2 u + c o s  20)(du 2 +dO 2) 

-- a 2e - 20 sinh 2 u cos 2 0 d~o e (6) 
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where 

p = a s inh u cos O , z = a cosh u sin O 
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(7) 

For L =  0 

-f12 coshu+l  
a = -  l n c o s h u _ l  

- ~  sinh2 U+COS20 

~ = -  In sinhZu 

(8) 

(9) 

3. JOHRI AND GOSWAMI'S METHOD 

For source-free electromagnetic fields the Brans-Dicke equations re- 
duce to 

8rr ~ ~i;j (10) R,j = '~ T;j-- ~ r  

ffk = 0  (~ov ~ - -3 /2 )  (11) ;k 

[i jkl]-~x;FJk =0  (12) 

0 : 0  (13) 

where the symbols have their usual meaning and o~ is the coupling constant 
as understood in the BD theory. 

Johri and Goswami have shown that corresponding to any diagonaliz- 
able solution of Einstein vacuum field equations in which fields and metric 
coefficients are functions of not more than three variables, we can generate 
a solution of the coupled B-D-Maxwell  field equations with nonzero 
electromagnetic field. Mathematically, suppose the metric 

ds2 =e2W(dx 3 )2_ e2W[ e.ra~( dx ~ )2] (14) 

with F a a  and  W as functions of x ~ x l, and X 2 satisfies Einstein's vacuum 
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field equations; then the metric 

ds 2 =e2~ -ew/F(dx 3)2_ e-2~-ew/r[e~Faa(dx ~)2] 

will satisfy the BD-Maxwell field equations with scalar field given by 

dp:eEW/F 

E, F arbitrary constants given by 

E 2 _ _ ~ - } -  

F (3+2o~)1/2 

and related to potential c by 

c + L = e  ~ 

where L is a constant. The potential c may be obtained by 

e 2 w -  1 k=const  
C = k e-TW-~+ 1 , 
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The electromagnetic field is defined by 

A = c c o s D ,  B = c s i n D ,  

(15) 

(16) 

(17) 

(18) 

Owing to the nonlinearity of the field equations one of the obstacles to 
a better understanding of the physical implications of general relativity is 
the relative scarcity of exact solutions. Hence generation of any new 
solution is always a useful step forward. We shall now use Johri and 
Goswami's method to generate a static electrovac B-D solution using 
Jipoy's solution in oblate spheroidal coordinates. 

4. BD-MAXWELL SOLUTIONS IN OBLATE SPHEROIDAL 
COORDINATES 

where A is the electric potential and B is the magnetic potential. When the 
fields are independent of x ~ instead of x 3, B would be the electric potential 
and A the magnetic potential. 

D = const (19) 
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Using the line clement (3) we get 

g00 = exp(2/~- Eo/F) 

( e,p,  sc u,, )2expI  tan cs  ut  20) 
= ~Cexp(_2fltan_lcschu)+l + L  

. exp(-2f l tan- I  csch u ) -  1 1-2 
- + L  

g33= ~ exp(__2fltan- 1 csch u) + 1 

Xa2cosh2ucos2Oexp( E---ff fl tan- ' csch u) (21) 

[ expt-a ta -' sc ./-a 1-2 
E 1 X a2(sinh2u+sinEO)#2+lexp(-fffltan- cschu ) (22) 

(cosh 2 u) B= 

~=exp(-E~-l=exp[--(E/F)fltan-'cschu] (23) 

The electric potential 

exp ( - 2/3 tan- 1 csch u ) - 1 
B=csin D=k sin D (24) 

exp( -2/3 tan -1 csch u ) +  1 

In the asymptotic region where u--> m our metric becomes flat, when L is 
put equal to unity and the electric field vanishes and the function q~ becomes 
constant as expected. 

Moreover, when o~ ~ ~ ,  E/F~ 0 

Hence our metric reduces to the Einstein-Maxwell solution. This is also 
consistent with the requirement of the Brans-Dicke theory. This solution, 
however, is not exactly similar to the one we get using Harrison's method 
(Harrison, 1965) of generating the electromagnetic analog of Einstein's 
solution. 

Let us study the asymptotic behavior of the above solution. It is evident 
from the transformation equation (2) that the oblate spheroidal coordinate 0 
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is measured from the equatorial plane. Now spherical polar coordinates 
(r, O) are connected with cylindrical coordinates (p, z) by means of the 
equations 

r : ( p  2 +z2) 1/2, O=sin-lz/r (25) 

Contrary to the usual convention 0 is here measured from the equator rather 
than from the pole for comparison with oblate spheroidal coordinates. 
Using equation (2) we obtain 

r = a(sinh 2 u + cos 2 0)1/2 ----> a sinh u (26) 
U--~ O0 

- #= sin- l a sinh u sin 0 ~ 0 (27) 
r u---> oo 

Using the above relations we get from the asymptotic expansions of the 
equations (20) and (24) the effective mass and the electric charge of the 
source to be fla[k +- 1/(3+2r I/2] and flaksin D, respectively. The second 
term within the bracket is evidently the contribution due to the B - D  field. 
Moreover, the charge/mass ratio is a constant, as desired. 

It is well known that in our coordinate system u-constant surfaces are 
oblate spheroid. Further, 0-constant surfaces are discontinuous as they cross 
the disc u=0,  p<-a. We can easily see that the derivatives g~,,z are 
discontinuous across the disc but the g~ themselves are continuous. Zipoy 
endowed the discontinuity with very complicated topologies. But Bonnor 
and Sackfield (1968) interpreted the discontinuity in the derivative as being 
due to the presence of a monopole layer of matter with Euclidean topology. 

5. B-D-MAXWELL SOLUTIONS IN PROLATE 
S P H E R O I D A L  C O O R D I N A T E S  

Using equations (8) and (9) we now generate solutions in prolate 
spheroidal coordinates: 

{ )2( ) 
[(cosh u+  1)/(cosh u - 1 ) ]  - p -  1 cosh u+ 1 

= + L  
goo k [(cosh u+ m)/(cosh u - 1 ) ] - ~ +  1 cosh u -  1 

(28) 
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coshu+  1 )fl/2(E/F) 
~ =  coshu-- 1 

(29) 

[(cosh u +  1)/(cosh u- -  1)] - a - -  1 B=k sin D 
[(cosh u + 1)/(cosh u -  1)] - ~ + 1 

(30) 

These solutions are also Enclidean at infinity and the scalar potential 
becomes constant and the electric field vanishes there. The charge/mass 
ratio once again is constant. 

There is, however, a noted difference. When u ~ 0 ,  at the axis of 
symmetry the metric becomes singular. This is the case with Zipoy's solution 
also. There is thus one-to-one correspondence with Einstein's theory so far 
as singularity is concerned. So there exists a region of infinite red shift on 
the symmetry axis p = 0, - a  ~< z ~< - a .  But unlike the case of oblate spheroid 
the 0-constant surfaces are no longer discontinuous across the u = 0 disc. 

6. R E D  S H I F T  

Following the discovery of quasisteller objects with large red shifts, the 
question of gravitational red shifts has of late assumed an added signifi- 
cance (Burbidge and Burbidge, 1967). The red shifts were assumed to be 
cosmological. This assumption requires colossal amounts of energy to be 
released by the QSOs. Later observations showed that the case for noncos- 
mological red shifts is strong (Burbidge, 1973; Sanders, 1974). It may not be 
quite out of place here to see whether our space-times also admit of large 
gravitational red shifts. 

Bonnor and Wickramasuriya (1977) obtained an interior solution of 
Einstein-Maxwell equations for an oblate spheroid. We assume that our 
solution can also in principle be matched to an interior spheroid. 

Let a photon in that case emanate from a point P on the surface of the 
spheroid and be received by an observer at a large distance where the 
space-time may be assumed to be Euclidean. Then the gravitational red shift 
is given by 

~ = e - ~  (31) 

fltan_lcschuo [ exp(_2fltan-lcschuo)_ 1 ]-l 
=exp (3+2to)1/2 k e x p ( _ 2 f l t a n _ l c s c h u 0 ) +  1 r - 1  (32) 

where u=u o characterizes the surface of the spheroid. 
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If gEM refers to the red shift for the case of Einstein-Maxwell field and 
~BDM refers to the case of BD-Maxwel l  field, they are connected by 

_ - [ fltan-lcschu0~ ] 
~BDM--~EMeXp[  ~ (when the red shift is large). (33) 

Thus in the presence of the scalar field the red shift increases. 
We may now consider two limiting cases keeping the mass constant: 

(a) u 0 ~ 0 ,  g ~ o o  

(b) a-~O, ~--, oo 

Thus in both cases the red shift becomes infinity. While in the first case the 
spheroid tends to a thin circular plate, in the second case it remains a 
spheroid but  its volume tends to zero (a being a measure of the dimension 
of the spheroid). The cases with prolate spheroid are also more or less 
similar. 
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